课堂:高压氧治疗疾病的原理发表时间:2021-11-14 16:14来源:吉大一院高压氧诊疗中心 高压氧治疗原理 血氧运输途径:1、与血红蛋白直接结合,形成氧合血红蛋白。为化学溶解。每100mL的血液中约含有14g血红蛋白,常压下能结合氧约19mL(血红蛋白结合氧饱和度为97%),是常压下氧运输的主要方式。2、物理状态溶解:常压下,每100mL血液中只溶解0.3mL氧气。尽管这种方式运输的氧量少,但是首先被组织利用,然后氧合血红蛋白中的氧才与血红蛋白分离,溶解到血液中,弥散到组织间液中,被组织细胞利用。 高气压下,血红蛋白氧饱和度迅速达到100%,不能再结合氧。而血浆中以物理状态溶解的氧随着氧分压的升高不断增加。在3个标准大气压(ATA)下,以物理状态溶解的氧量可达6.6mL/100mL血液,此数值与常压下呼吸空气时人体动静脉氧含量差6mL/100mL血液大致相等。即是说,在3ATA下,仅物理溶解的氧就已经完全可以向组织细胞提供氧供。 因此,高压氧用于治疗血红蛋白丧失或失活性疾病,如一氧化碳中毒、失血及其它变性血红蛋白症,可作为代偿血流量减少的一种应急措施。 根据气体物理定律,气体弥散的速度与气体的压力差成正比。压力差愈大,弥撒速度快,弥散量大,弥散距离远。在高压氧治疗时,肺泡氧分压明显增加,肺泡内氧气向动脉血液中弥散的量比常压下增加,动脉血液中的氧含量也明显升高。由动脉毛细血管中向组织细胞的弥散量也增加,弥散距离增大,个组织的氧储备量也大大增加。 常压下,呼吸空气时,机体内毛细血管中氧的弥散半径为30um;在3ATA氧下,有效弥散半径可增至100um,毛细血管周围的组织细胞和体液中的氧含量及氧分压也增加。 因此,高压氧用于治疗组织水肿致使弥散距离增加的疾病:如脑水肿、肺水肿,也可用于治疗毛细血管损伤或血管阻塞而造成供氧障碍的疾病:脑血栓形成、烧伤、肢体挤压伤、外伤术后血循障碍等。 高压氧下,血氧张力增高,血管自动调节,致使血管平滑肌收缩。在脑组织中,脑血管收缩时,脑血流量减少;但是由于血中结合氧及物理溶解氧的增加,脑组织、脑脊液的氧分压实际比常压下增加。因此,高压氧对脑缺氧、脑水肿的抢救治疗十分有效。它通过增加血氧含量,提高血氧分压,改善了脑组织缺氧状态。同时,由于脑血管收缩,脑血流量下降,减轻了脑水肿,降低了颅内压,从而打断了脑缺氧-脑水肿-颅内压升高恶性循环。 特别指出,高压氧下,颈动脉系统血流量减少,而椎动脉血流量反而增加。因而,网状激活系统脑干部位的氧分压相对增加,有利于昏迷病人的觉醒和生命功能活动的维持。 当局部组织氧分压在5~10mmHg时,纤维母细胞增生及胶原纤维的形成受到抑制。高压氧下,血氧分压和细胞外液的氧分压增加,刺激血管纤维母细胞分裂活动和胶原纤维的形成,促进新血管的生成,加速了侧支循环的建立,有效地纠正和改善组织的缺氧状态。有氧代谢旺盛,产生足够的三磷酸腺苷,有利于蛋白质的合成,促进新鲜肉芽和上皮的生长。 因此,高压氧用于治疗植皮、断指(趾)再植、脑血栓形成、顽固性溃疡、无菌性骨坏死、慢性骨髓炎和骨折愈合不良等多种疾病。 厌氧菌只有在无氧或氧分压较低的环境下才可生长,当氧分压为250mmHg时,产气梭状芽孢杆菌的外毒素产生也受到抑制。故在2.5~3.0ATA氧下,所有厌氧菌都不能在体内生长繁殖。 因此,高压氧治疗气性坏疽和破伤风有特殊的效果。 气体压强与其体积成反比。高压氧下,气泡被压缩。在2ATA时,气泡缩小1/2;在3ATA氧下,气泡缩致1/3。被气泡堵塞的血管恢复血液供应。同时血液中的氧气置换气泡内氮气,并加以利用,气泡很快消失。因此,高压氧治疗气栓症及减压病,有特殊疗效。 |